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Abstract: The electron velocity distribution function in the low-pressure discharges
with the crossed electric and magnetic fields which occur in magnetrons, plasma
accelerators and Hall thrusters with closed elecon drift, is not Maxwellian. A deviation
from equilibrium is caused bya large electron mean free p#n relative to the Larmor radius
and the size of the discharge channelln this study, we derived in the relaxation
approximation the analytical expression ofthe electron velocity distribution function in a
weakly ionized Lorentz plasmawith the crossed electric and magnetic fields the presence
of the electron density and tempegrture gradients in the direction of the electric field The
solution is obtained in the stationary approximation far from boundary surfaces, when
diffusion and mobility are determined by the classical effective collision frequency of
electrons with ions aml atoms. The moments of the distribution function including the
average velocity, the stress tensor, and the heat flux were calculated and compared with the
classical hydrodynamic expressionsA theoretical study is presented ofthe electrostatic
electron cyclotron instability involving Bernstein modes for the obtained distribution
function in the spatially uniform plasma. Particle-in-cell simulations were used to study the
nonlinear evolution of the instability.

Nomenclature
expressions in the distribution function formula

subscript related to thee | e ¢ birth@distrikfitionfunction

magnetic field

electron velocity in a reference frame moving atif delocity

elementary charge

electricfield

characteristic thermal electric field

= dimensionlesglectron velocity distributiofunction

= electron velocity distribution functioandelectronbirth distribution functiorrespectively

modified Bessel function of the first kiraf orderk

Bessel function ofhe first kind of ordek

space domain length in the simulation model
electron mass
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HE study of weakly ionized plasma in the crossed electric and magnetic fields is of great importance for the
simulation of magnetrons, lgsma accelerators and Hall thrustérsin these devices, the discharge is
maintained by applying a constant potential difference between the anode and the cathode. The external constant
magnetic field has a direction predominantly perpendicular to l¢etrie field. The electrons drift in the crossed
fields and ionize the neutral atoms. The ions are accelerated under the influence of the applied potential difference
and form together with the electrons an electrically neutral plasma stream. The ateatrdensity in these devices
is kept sufficiently low providing rare ieatom collisions to effectively accelerate the ions. Due to a low pressure of
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electron number density
stress tensor component
pressure
heat flux

radius vector

collision term

temperature

time

dimensionlesglectron velocit in a reference frammoving with the drift velocity
averageelectronflow velocity

averageelectronghermal velocity, which they acquire after the collision

dimensionlesglecton velocity

electron drift velocity in the crossed electric and magnetic fields
dimensionless electron drift velocity in the crossed electric and magnetic fields
parametepf thefithermal ring distribution function

coefficients in the stress tensor formula

parameter reciprocal of the Hall parameter
coefficients in the stress tensor formula

= Kinetic corrections to the transport equations
Kronecker delta

permittivity of free space
characteristielectrondrift energy

wave electric fieldenergy

ionizationenergy

characteristic energy of theectronthermal motion
averageelectronenergy loss ithe excitation collisions
dimensionless cooidatez

coefficients in the stress tensor formula

Debye length
effective collision frequency
= Coulomb, elastic, excitation and ionization collision frequesncespectively

electronvelocity

auxiliary phase angleharacterizing the position of an electron on a cycloid
phase angle characterizing the position of an electron on a cycloid
electron cyclotron frequency

electronplasma frequency

l. Introduction
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neutral gas, electreatom collisions are also raamdthe electron Larmor frequency is many times highan that

of collisions of electrons with atoms, ions, and the discharge channel walls. Therefore, the Hall discharge plasma is
characterized by high values of the Hall parameter, which is the ratio of the electron Larmor frequency to the
momentum transf collision frequency.

At present, the problem of numerical modeling of plasma dynamics in the Hall discharge has not been
completely solvetl The main obstacle is the problem of modeling the motion of electfdres.modeling of the
electron flow in the inetic approximation is extremely time consuming. Thealted "hybrid" models, in which
the motion of electrons is simulated in the hydrodynamic approximation, and heavy ions and neutral atoms are
considered as particles, provide a significant advaritagelume and speed of calculatié®s However, the use of
the classical equations of hydrodynamics is justified only in those cases when the distribution function of the
simulated particles is close to equilibrium. It takes place either at a highiaroftiequency or by the availability of
some other processes that lead to a rapid relaxation of the distribution function toward equilibrium. A relatively low
frequency of the electron momentum transfer collisions and, accordingly, a large electronemgaattfrcompared
to the Larmor radius and the size of the discharge channel can cause significant deviations of the electron velocity
distribution function (EVDF) from equilibrium.

The electron distribution function in the Hall discharge plasma is usstaitiied numericalf?*2 The general
approach to the derivation of analytical expressimssumes small deviation of the EVDF from equilibriuthte,

This assumption is not entirely true for the Hall discharge plasma in which the deviation from eguiigobiig and

may lead even to the nonmonotonic behavior of the electron energy distribution ftihGmreral studiéd'®have

been devoted to the influence of secondary electron emission from the discharge channel walls on the formation of
an anisotrpic EVDF. However, anisotropy of the EVDF may occur in the absence of walls too because of the
fundamental characteristics of the electron motion in the crossed electric and magnetic fields.

In this work, we do not set the task of reconstructing in d#tailform of the distribution function in the Hall
type devices. There are many factors influencing on the movement of electrons in a real discharge. These include,
for example, the following factors: inhomogeneity of the electric and magnetic field;fegatrforces in the
devices withannulardischarge channel; electron diffuse scattering and secondary electron emission on the walls of
the discharge channel; longitudinal plasma oscillations and azimuthal waves. Such a complex problem can be solved
only by numerical methods. Our goal is to reveal the principal differences between the Maxwellian distribution
function and the distribution function in a weakly ionized plasma with crossed electric and magnetic fields where
collisions with heavy particles aradni nant . Further, to indicate this type
di scharge plasmabo.

Earlier we derived an analytical expressadrthe EVDF for the case of a weakly ionized Lorentz plasma in the
spatially uniform approximatidh The aim of tis paper is to extend the previously obtained results to the case of a
nonuniform plasma and calculate the EVDF in the presence of the electron number density and temperature
gradients in the direction of the electric fiefince the distribution functiomay benonmonotonicat some plasma
parameterswe alsoinvestigated the electrostatic electron cyclotron instability involving Bernstein modes caused by
this distribution.The purpose of ik studywas to understanifl there isany universal form to whicthe distribution
function approaches, if the instability does occur.

The paper is organized as follows. First, the kinetic equation is described and the statement of the problem is
formulated in Sec. Il. In Sec. I, the kinetic equation is solved aadEWDF is obtainedin Sec.1V, the shape of
the EVDF at different conditions of the problem is considele&ec. V, the moments of the EVDF are calculated.

In Sec. VI the electrostatic electron cyclotron instai@itare studied theoretically andging 1D2V particlein-cell
simulationmodel

Il. Formulation of the Problem

A. Kinetic Equation

In a plasma of theHall type, the number density of neutral atoms is approximately one or two orders of
magnitude higher than the number density of charged particlpgal yparametersf such a plasma are considered
in detail for example in Ref. 21 At characteristic electron energies abd@eeVin such a plasma, the effective
frequendes of Coulomb electroselectron and electreion collisionsare tens of times sailer than theelectron
atom collision frequency For this reason, noapid maxwellizationof electrons occurs ithe Hall type plasma.
Because of the smallness of the Coulomb eleettentron collisiondrequency, electrons rarely exchange energy
among hemselves, and much more often, the energheglectronslirected drift is converted into thermal energy
because of collisions with heavy slow particles.
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Since most of the collisions are not Coulomb ones and scattering not occurs at smallimrthkeginetic
numerical models of the Hall discharge the FokRimck equation is not usually used. The exact kinetic Boltzmann
equation is also usually not used because it is rather complicated and requires taking into account the differential
cross section$or different types of collisions, which are poorly known. Therefore, simplified models are usually
used to describéhe electronratom collisions. These models operate with effective collision frequencies, and the
most common assumption is the isotropistidlbution of the scattered electrons. Such simplifications are, in fact,
very close to the basic assumptions on which the Bhatu@igesKrook (BGK) collision modelis based.

Our formal set up is as follows. We consider a weakly ionized plasma irrdeenge of the uniform crossed
electric and magnetic field$he electron diffusion and mobility are determined by the classical effective collision
frequency.The density of the gas, the degree of ionization and the strength of the fields are asswemdhotbat
electron collisions with heavy particles are dominated. Under these conditions, the Boltzmann type kinetic equation
for the electrons with the BGK collision term can be written in the form

H oW CEvas ) =p(t, - 1), )
Mt e m 3

where f is the electron velocity distribution functiom; is the radius vectors- is the velocity vectorE is the

electric field; B is the magnetic induction vecton is the effective frequency of collisions, is the secalled

electron fAbirtho distribution function (EBDF) whi ch
EBDF is assumed to be locally equilibrium, i.e.

f, = anUVTZb)- * exp(— < /VTZb)’ @)

whereV,, = \/ZTb/m is the average thermal velocity of the electrons, which they acquire after the collision. Since

the average velocity of the ions and neutral atoms substantially less than the velocity of thaselbete it is
assumed that the average electron velocity vector after the collision is equal to zero.
When analyzing the neequilibrium distribution functionswe will use the standard definitioof the

hydrodynamic macroparameteraccepted in the Kkingt theory® n= ﬁf d3 is the electron density
V] :( n) ff 3d> is the average velocity, P :mf{xi - \/i)()(j - V].)f ds is the stress tensor
p=(PXX+PW+PZZ)/3 is the pressureT, =P, /n is thei- th component of the temperag) T = p/n is the

average temperatui@ll temperatures are expressed in energy Jnijs= (m/2)ﬁ3~ V)(3~- V)2 f d3 is the heat

flux vector.

The most important types @lectroncollisions in a Hall type discharge are elastic, excitation anizdtion
collisions with atoms, and Coulomb collisions with iombus, we take the effective collisidrequencyas the sum
n=n,+n,+n,+n of the Coulomb, elastic, excitation and ionization frequencies respectivelgedcribe thse

collisionswithin the BGK model the collision terrS(f ) :n( f, - f) must satisfy the following conservation laws:

f(f)da=nn;  pS(f)de=-mv; n“JmTZS(f)d3~=-Q7iq+nx<ex>)n, ©)

where <ex> is the average energy loss tine excitation collisions and e is theionization energy The second

relationship in Eq. (3) is fulfilled automatically f(ﬁ(f) under consideration. The first and the third relationships
lead to the following equations:

_n+n
n

n; (4)
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&) ne _
+n, n+n

3 mV2Q n
°T = ST + - ©)
2° n+ éﬁz 2 Q n

Thus,Egs.(1), (2), (4) and5) form aclosedsystem of equations to be solved.

Before we go to solvingve will write a setof hydrodynamic equatiortbatfollow from the kinetic equation (1).
Availability of this setwill allow comparing the values of the diffusion rate, mobjliand thermal conductivity
calculated in the hydrodynamic atftk kinetic approximations.

B. Equations of Moments
After multiplying Eq.(1) by the electron nass m, momentumms- and energymx2/2 and integrating over
velocities,we obtain the following system of equations

E+M:nin (6)
TRIT
W WY 1R
Y g i VBl 6 g
MT Ly ML 2 W0 219 ) Bye. 28 p 80y T4 288 ®)
T 30 F e 3n 3 3 %3 32

Let the electridield and the magnetic fielde uniform and perpendiculaoteach other, and the plasma htéhe
electron numberdensity and temperature gradients only in the direction of the electric Wddchoose the
orthogonal coordinate systenm which the magnét field is directed along th&-axis, and the electric field is
directed along the-axis. Taking Eq. (7) for the vela@ity components lying im plane perpendicular to the magnetic
field and neglecting the convective derivati\xé‘ﬁs’y / dz and dV, /dz in the stationary approximation we obtain:

- (I7+I’Ii) a R, Why dR’ZG 9
o ) & 8 ©

where 1, = eB/m is theelectron cyclotron frequency.

When studyinghe Halltype dischargein Eq. (9)it is usually assumethat WC2 > :(n +n, )2. It is also assumed

that the electron temperature is isotropic. It allows simplifying the stress tensor by recoedirige product of the
unit tensoron the pressurePJ.k = a’jknT. The result is a classic exprassifor the diffusion rat acrosshe magnetic

field
v, =- (n+ni)geEE+ 1 d(nT)o
w, ¢cm mn dz o

C

(10)

which is most often used in the hybrid and hydrodynamic models.
Note thatalthough the modl collision integral in Eq.1) includes thetotal electron collision frequency
n=n,+n,+n,+m, the expression of theobility and thediffusion rate(10) includes not this frequency, btite

frequency (/7 +ni). Thus, in the hydrodynamic approximatidmeteffective electrorollision transportfrequency
must include the doubled ionizatiopllision frequency We call attention taohis, because in all publicationshown

to us, the frequency wasused in thanacroscopic transport equatiofi$is inaccuracy does not usually lead to a
significant error in the solution afnedimensional and twadimensional models, as to account for the anomalous
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conductivity these models inclug additional empirical frequency, = K, which is more than an order of
magnitude greater than the classic collision frequemtythis case the unaccounted additive to the effective
transport frequencpecomes unnotieble against the background of tlaege magnitude ofz, . However, in the

threedimensional models, as well as the twodimensional in which e of the coordinates is the azimuth
directionangle there is © need to use th@nomalous collision frequencgnd the mentionedorrectionmayplay a
significant role.

. Solution of the Kinetic Equation

To calculate the distribution functionye will use the integral form of the kinetic equation. At a constant
collision frequencyaway from the boundary surfaces the distribution function, which satisfiesuh#at(1), may

be represented in the formttie integral along the electron trajectory in thage spa&?
t
f(t.r,3)=n fif, (t.r..3)exl- 7 (- t,)]dt . (11)

wherer, and 3; are thecoordinate and velocity of the electrortiztime t;, <t .

We seek a stationary solution of this equatiorthieuniform crossed etgric and magrtic fields. As in the
previous sction, we choose an orthogonal coordinate system in which the magneti fesddthe electricfield E
are directed along thec-axis andz-axis, respectivelyThen he phae trajectory is described by system of
equations

? . 1 .._y
llrl—r WCDyCQ WCW’ (12)
ta; = A, Gt W

where W = (0, E/B, 0) is the electron drift velocity in the crossed electric and magnetic fields in the absence of
collisions, and the following notations argroduced:

g o0 0g g oo oy
fiEe- Wiy =m(t-t); D, =& siny 1-coy)s A, =af coy sy &
R -@coy) sy 2 P -siny coy 2
Substituting the equilibrium EBDffom Eg.(2) into Eq.(11) we get
f(r,3~): bmlcd\/Tzhl)_ * exp[— Xlz/szbl' b )’]dy ’ (13)
0

where b :/7/1/1/fn is areciprocal of the Hall parametén this expression, the values nf, andV,,, are taken at the
pointr,.

If the plasma parameters have gradients only in the direction of the electric fielanghapér integral in
Eq.(13) can bereduced to the integral overp@riod of the cyclotron rotatiorReally, $nce the valuesf n,, and

V;,, depend only on the coordinatg, then due to Eq12) they are periodic functianof the phasey . The

velocity vector3, according toEq.(12) is also a periodic functioaf )y and thereforéeq. (13) can be written as
follows:

f= bh:(y)exp(— b ))dy . (14)
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where F(y)z nolca\/fbl)' 52 exp(— )(lZ/VTZhl) is the periodical function of . Rewriting tfe integralin Eq. (14)as
the sum of the integrals ovperiod, we obtain

f=ba FF(V)exp[ bly +2kp)|dy = Wﬁ:(y)exp( b ydy (15)

k=0 o
and then Eq(13) takes the form:

b

Txp[ﬂrm(pv AN ARy R 16)

In the uniform crossed electric dmmagnetic fields the electrarajectory is a trochoidn Eq. (16), theintegral is
calculated along part of the phase tregtory, which corresponds tosangle period of the trochoid in the coordinate
spae. If the plasma parameters vary little over distances of the order of the trochoid height, the inteBar(dé)
can be represented as the Taylor s:eaieéz1 - z). Restrictng ourselves to linear terms of the expansion, we obtain

b 2 2o ld 2X2
- %rﬁ (z- Z1)n o Zﬁr 38\, d“uuexp( XENG-bydy (A7)
e'b Tb Tb

The coordinatesjifference(z- zl) and the velocity squarxl2 may be expressed through thieasey , with the
help ofEqg. (12) as follows

z- 7 :%(cosc- cos/ ) (18)

=fif +W? + 2Mi) cosc, (19)

where ¢ =y - arctaricz/cy); C. c +c . For convenience of the further analysis, we will use the following

=,
dimensionlessariables

F=fVa/n: u=cMy:  W=WMN,:  VEWHUS 2=z, (20)

After substitutingeq. (18) andEqg. (19) to Eq. (17) and changing thariablesaccording to Eq(20), the ultimate
expression of the distribution function takes the form

1 bexp(— w2 - u )2” ldn, , 1dT,@
= + — b 2wu, cosc- b y)d (21)
1o 2 d B A A 6 oW A
where
A, =U, - U, COSC; Ar = A+ A, cosc+A,cos2c;
o =u %vz+u o wWu?; Arl=-uA%2+wz-g-2wuy€j A, =-wu.

In the Hall type discharge the momentum transfer collision frequency is much smaller thabather
frequency, spour interest isin the asymptotic form of the distribution function gt- 0. In this case we have

b/[1- exp(- 20 - 1/(2p) and the dimensionless EVDF takes the form:
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exp(- W - u2)
o

0"'(uy|0+uAI )idno +(Aro|0' Af1|l+Af2|2)

n, dz

1dT, 2

F = — 2N, (22)
T, dzH

MDD (D/

P
where |, (2wu, ):(l/p)ﬁaxp(ZWUA cost)cost) dt, k=0,12 are themodified Bessel functions of the first
0

kind. Theasymptotic distributionudnction (22) has particularly simple fornin a homogeneous plasma:

I:_exp(- W - u? - u?)
- pa/z

I, (2wu, ). (23)

This form is somewhdike the form of dstribution function, called the "thermal rirtg"

: 1 8ug
FV=——_5"0¢ exp(- uf/az), j=012,..., (24)

péjlca +
whichis used in studyingyclotron harmonic phenomeimamagnetized plasma?®,

V. Structure of the Distribution Function
In the absence of a birth temperature gradient, &43.and (22) contain a velocity componant only in the

factor exp(— W - u2)~exp(- uf) . Therefore, in the direction of the magnetic field the EVDF is Maxwellian. At

arbitrary values of the Hall parameter in the presence of the birtherature gradient, the Maxwellian character of
the EVDF in the direction of the magnetic field is disturbed because the coeffigigntsp,, depend on a square

of the velocity u?, which includeshe term uf. But also in this case, the electron velocity distribution along the
direction of the magnetic field remains symmetrical with respect to the velagifyherefore, in thisection we will
consider the EVP in a plane perpendicular to the direction of the magnetic field, calculatingijt=0. Also, for
better clarity of the diagrams we will normalize the EVDF to its maximum value.

A. Spatially Uniform Plasma
In spatially uniformplasma, thalimensionless distribution function depends on the two parame(lmsv/wm

and w=WV,, = (E/B)./m/(2T,). The distribution functiorn the limit of rare collisionss - 0 calculated with
using Eq. (22) for spatially uniforlasmais exemplifiedin Fig. 1.

In the absence of the electric field/E 0) the distribution function is Maxwelliamn the presence of the electric
field, a maximum othe function becomes flattewith the increasing parametew, and at some point, the EVDF
acquires a crater shapkhe reason for the formation of such a form is illustratdelg. 2.

(b)

I1.0

=08

-06

m0.4

I0A2
0.0

0 2 4 0 2 4 V 0 2 4 vy 0 2 4 W
Figure 1. EVDF in the uniform plasma at 6- 0: (@ w=0.0; (b)w=1.0; (c) w=15; (d) w=20.
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In the absence of the electric fieldgv= 0)
the distribution function is Maxwelliann the
presence of the electric field, a maximumttod
function becomes flattewith the increasing
paraneter w, and at some point, the EVDF
acquires a crater shap@he reason for the
formation of such a form is illustrated Fig. 2.

Figure 2(a)shows in the coordinate space the
electron trajectoriesn the shape of a trochoid
that are distinguished by differentinitial

velocities.Here and in all subsequent examplelg, > Proiecii ¢ ical oh . . f
it is believed thatB, >0 and E,>0. The igure 2. Projections of some typical phase trajectories o

electrons on: (a) the coordinate plane, perpendicular to the

projections of therelevantphase trajectories onmagnetic field; (b) the corresponding plane in the velocity
the corresponding plane in the velocity spaee apace.

shown in Fig. 2 (b). On the so-called prolate
trochoid, shown by a dashed lineRig 2 (a) some of the characteristic points are numbebedthe right side of the
figure, corresponding points the velocity space are depicted.

A continuous line shes a cycloid, in which electrons move witte zero initial velocity after collisionln the
limiting case ofperfectly inelastic collisiog) for example, when all the electron energy is spent on ionization and
excitation, the initial velocity after the kision V,, is close to zeraand we havew> 3. In this case, the

distribution function differs significantly from zerin a small neighborhood of the circle, which corresponds to a
trajectory in the form of a cycloidhown in Figure 2 (b) with theontinuous lineTherefore the EVDF has a crater
shape with narrow walls'lhe number of electrons moving time prolateand curtatetrajectories shown in Figure 2

by the dashed and dotted lines, respectjgigws withthe increaseof the averag&BDF thermal velocity\/,, . In

the velocity space, this leads to a broadening ofBW®F crater wallsIn the limit w- 0O, when the averadairth
thermal velocity is much higher than the drift \@ty, the crater walls merge, as thédth of the wallsbecomes
much greater than the distance between them and EVDF becomes close to Maxwellian.

Figures 3 and 4show theEVDF calculated with using Eq. (28} the finite collision rate fospatially unifom
plasmaat w =1 and w = 2 respectively for several values of tharameterp .

B=2

Figure 3. EVDF in the uniform plasma at w=1.0 for several values of thgparameter 5 ..
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Figure 4. EVDF in the uniform plasma at w= 2.0 for several values of theparameter 5.

At a high collision frequency, the distribution function is close to equilibrium and hasall shift of the
maximum abng thecircumference that corresponds to a cycloid trajectory thittzero initial speedThe vector of
this displacement determines the components of the drift velocity and moldiitythe decrease of the parameter
b, i.e, at the reduction of theollision frequencyascompared to the Larmor frequency, the region occupied by
comparatively high values tfie EVDF extends along the circumference which corresponds to a cycloid trajectory.
In the limit of rare collisions, the EVBRend to the asymptotic functisshown in Fig. 1Thus, the asymptotiof
the EVDFs shown in Fig. 8t - 0 is the function shown in Fig 1(b). h& asymptotiof the EVDFs shown in

Fig. 4 at - 0 is the function shown ifrig 1(d).At this limit the drift velocity tends to the valud W = E/B,
and the velocity component along the electric field tends to zero.

B. Plasma with Electron Number Density and Temperature Gradients
Now we ®nsider the effect of the @#on numberdensity and temperature gradients in the direction of the

electric field on the EVDF.For brevity we will use the notati® (In nb)iz(il/nb)dno/dz, and
(InTb)i:( b)d-ﬁ)/dz'

Figure5 showsthe examples of the EVDF in the limit of rare dslbns (6 - 0) at (In nb)i =0.1, (in Tb)i =0

In the absence of the electric fieldvE0) the EVDF is close to Maxwellian distributioand has a slight
displacement in thelirection v, that corresponds to the speed of the diamagnetic drifthe presence of the

electric field,thedirection of the diamagnetic drift coincides with the direction of the drift in the crossed electric and
magnetic fields.The omparison ofthe distributon functionscalculated in the absence atiee presence of the
electron number density gradient gives lestvisual representation of distinctions between the two types of drift.
Comparing the diagrams in Fig. 1. and Fig.we see thathe drift in thecrossed E3 B -fields appears as a
displacement of the crater center from the origin, and the diamagnetic drift corresponds to the skewed heights of the
crater walls.
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Figure 6. EVDF at (Inn,) =0;(InT,) =0.1; £- 0: (@Qw=00; (k) w=1.0; (c)w=15; (d)w=20.

Figure 6 shows the examples of the EVDF in the limit of rare collisiots-( 0) at (In nb)i =0, the

temperature gradier(lnTb)i =0.1, andw=0.0;1.0;1.5; 2.0. An interesting feature of the distribution function in
the absence of the electric fieldvE=0) is a small shift of the maximum of the distribution function @ogvthe
region of negative values of the velocity componept At the same time, the average velocity componént

calculated numerically for this distribution function is greater than zero, which is consistenthevittassical
theory.

V.  Moments of the Distribution Function
Macroparameters of thebtaineddistribution function can be calculated analytically. The resulting integrals are
reduced to the Laplace transform of dtions inthe form (siny)m(cosy )", where mn=0,12,.... Another way
of calculaing the moments based orethise of the saddle point approximatiém which the explicit form of the
distribution funcion was not calculated, wakescribed in Ref27. The expansios of macrparameters inerms of
the powersof the (z- zl), containedthe members up to the second order inclusiMeerefore, the resulting
expressions of moments included the first #m@lsecond derivatives of the EBDF macroparameterthis paper,
we presenthe expressions obtained by direct integrationhaffunction (2L), which contain only spatial derivatives

of the first order. For convenience tie comparison with classical expressions, talk macroparametersre
presented in the dimensional form.

A. Electron Number Density
Integration of the functiof21) overspeed yields the following expression for the electron number density:

1 eEdn,
n=n. + 9. (25)
* wl+n® m dz
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If the electric field is zerdrom Eq. (25) it follows, thatn, =n, which according to thenassconservatiodaw
(4), correspads to the conditiom, =0. SinceEq. (25) corresponds ta stationary solution of the kinetic equation

we can conclude that if the electric field is zexatationary state is possible oimyabsence abnization.If E | O,
then déiminating fromEq. (&) thenumber densityn, by means oEq. (4), weget

1dn_ n(w+n’) m

: (26)
n dz n+n ek

Thus, fromEq. (26) it follows that in the presence of ioatzoncollisions (7, > 0) the steady statmay be reached,
if dn/dz<0, i.e.with a decreasef the electron number densitythe direction of the electric field.

B. Average Velocity

In the case ofan arbitrary value of the Hall parameter, the expressions of the macroparametergyare ve
cumbersom®&. Therefore, in the followingve consider the case of high Hall paramgtevhich is typical for
magnetrons an#lall type plasma sourcek this limit, theaveragevelocity components in the plane perpendicular
to the magnetic field, expresd in terms of the EBDF parametdrave the form

1T,

v, W+%+ mwd 1 db, 27)
2 +mwn, dz mw, dz
V,=- b+ - towed L 9, 1 dTLE (28)
& ¢ 4 smw,n, dz  wm dz

The velocity componen¥, equals zero, since the EVDF is symmetrical with respect to the veigcity

Sutstituting the EBDF parameterdrom Eqgs. (4) and §) into Eq. (B) and neglecting the convective derivatives
dVy/dz and de/dz, wegetthe following expression for the diffusion rate in the direction of the electric field

_ i)eE n 1 dTﬂ 29
V, = Zom megl D+DV)T PRt (29)

(&), ne . al37+ ! Ge
ne n e ¢c 4 =g
For convenience of the results interpretation, we introdiegdthe characteristic energy of the thermal motion
€. =3T/2 and the characteristirift energy g, = m\/\/2/2.

Comparing this expression wittg. (10), we see that the hydrodynamic and kinetic approaches provide the same
magnitudeof the electron mobility caused Iiye electric fieldIn both casethe effective collision frequency, vdin
deternines the mobilityjs equal to the sun(n +ni), i.e. it includes thedoubled frequency of ionization collisiolm

where D, =

case dn/dz=0, the expressions of the diffusion rate caused by the temperature gradient in hydrodgndmi

kinetic approximationgslsohave a similar formThe diffusionrate caused by the electranmberdensity gradient
contains aradjustmentD_ that takes into account inelastic collisions, as well as the kinetic corre@fiatueto the

nonMaxwellian nature of the distribution functioit has been revealeabove that for w< 4, i.e. when the
energy of the directed driftelocity is much smallgrthan the thermal energye( < <g;), the EVDFtends tothe

Maxwell function. In thecaseD,, - O andin the absence of inelastic collisiortsg. (29) becomes thelassical
expression of the diffusiorate
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C. Stress Tensorand Temperature
The asymptotic values of the stress tensomponents expressed in terms of the EBDF parametd#rs laigh
Hall parameters are of the form;

B a T mwW> Q. dn, N, ., dT,

P =d,n,T, +a;n,mW* +ég". Wchrg” WcéNderh” Wiw de . (30)
where a  =a,,=12; a,=b/4; g,=9,=12; g,=5b/12; h, =1:h
remaining coefficients equal zero.

These expressions explain the occurrencéiétic correction to the diffusiomate caused by the pressure
gradient.According toEq. (9), the diffusionrate in thehydrodynamic approximation is proportional to the sum of
the two gradientsb(dPZZ/dz) and dPyz/dz. In this sum, the contribution dhe off-diagonal componentthyZ/dz

=h,=2; h,=b/2, and the

yy

is usually neglected. Usingq. (30) and consdering only the first order derivatives, we obtain the following
expressionsf these twderms

b(dR,,/dz) = b(T, +mW2/2)(dn, /dz)+ bn, (dT, /d2), (31)
dR, /dz=(b/4)mW (dn, /dz). (32)

We seethat the cotribution of the P,, and PyZ gradiens to the diffusion ratareof the same order of smallness
in the parameterb =n/Wm. Therefore,a neglect of the offliagonal component of the stress tensor under certain
conditions may be incorrecgince the derivativedPyz/dz contairs notemperature gradient, the compond?@;

does not influencen thethermal diffusiorrate As we have seen aboathe uniform electromumberdensity, the
thermal diffusion rate obtained in the Kkinetic approximation cdegi with the classical expression of
hydrodynamics.

In the presencefdhe electron density gradietite contribution onyZ to thediffusion ratemay be neglectedif

mwWe < gJ,. i.e. when g, < <. As shown &ove, this case correspondstte EVDF, which is close tahe

Maxwellian one If the drift energy m\/\/2/2 is comparable with the EBDF temperatufg, the neglect of the off

diagonal component of the stress tensor is riewb. In this case, theEVDF differs appreciably from the
Maxwellian, and, according t8q. (29), thekinetic corrections to the driftelocity becomesignificant.
For the arbitrary Hall parameter alhethree temperature§ , Ty andT, differ from each othéf %", In the limit

of very rare collisions the EVDF is symmetrical with respect to the velogjtyW, and is characterized by two

different temperatures:T, =T, and T, =T, =T, =T, +mW?/2. Thus, the longitudinal and transverse

temperatures differ in the considered approximation by the value of the characteristic electron drift energy. We pay
attention to this, since in the current hybrid models the elet¢roperature is usually considered isotropic.

The steadystate solution (2) egablishes a certain relation betwete frequencies of elastic and inelastic
collisions and the gradient of the mean temperaTune(TX +Ty +TZ)/3. For exampleat b - 0 in the absence of

ionization collisionsfrom Eq. (4) and Eq. 8 it follows conditiondn, /dz=0 andfrom Eq. (30) we obtain

mw*  5W dT (33)

3 3w dz

T=T,+

which after the substitutioto Eq. (5) gives the following conditin for keeping thesteady state:
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—*(e,): (34)

The presence of a temperature gradient is explained as follows. In cetssiit and magnetifields after the
collisions, electrons acquire the velocity of directional drift thaing subsegent collisions with slow heavy atoms
is converted into thermal velocity. Thus, at a distance of the Larmor radius, the electrons acquire thermal energy
corresponding to the traversed potential difference. This leads to the appearance of a temperinteugtads
there are inelastic collisions that compensate for this growth.

D. Heat Flux
The components of the heat flux vector in the plane perpendicular to the magnetic field, expressed in terms of

the EBDF parameteet p* < 4 have the fom:

mwW* dn, é’lmvv2 g 5n, dT,
=- ~ 54 (35)
% 4w, dz ? 2 b82mW dz’
e mw amw2 03W2 dn, (&17 ., - @ 5, dT,@
= bé mW? - T, b~ b (36)
% gnb @ _2W dz g§0 92mW dzld

Substituting here the EBDF parameters fr@gs. (4), (5), we obtain the following expressions for the
components of the heat flux vector

n, nmwW? 5nT dT
=1 +(1- D, +D, 37)
=, s ( ¢ )2mW dz’
nn 3nWT n® 50T dT
=-{1-D,- D -{i-p,-D,) 2 S (38)
% ( ¢ “2)/7 +n 2w, ( ¢ q3)/7 +n, 2mu/ dz
9 ~ 2 2 2 ~
where D, :Mgio, - = 2740 0 ey Dy :%MOED _
c 2 =g 2nn e ¢ 20n g

Both components of the heat flux consist of the two terms. The first terms describe the heat flux due to ionization
collisions. This part of the flow is not rédal to the temperature gradient, but is due to the electron drift. Note, that
in the current hybrid models, the heat flux is usually neglected or assumed to be proportional to the temperature
gradient like in the neazquilibrium flows. The second terms Egs. (¥) and (B) are due to the temperature
gradient.We have seen above that the presence of ionization collisions in the steady state is possible only with a
nonzero gradient of the electron density. Therefore, both terms, in fact, arise dueresthe@gradient.

The same correctiorD_, asin Eq. (29)accouns for the presence of inelastic collisions. Tdmrectionqul,

D,z

the EVDF tends tahe Maxwellian distribution.The second term ikq. (38) describes the thermal conductivity in
the direction of the temperature gradidntthe limit &, /e, - 0 and inthe absence of ionizatiarollisions this

expression coincides with the classical expression for the he#t flux

and D, result from nonequilibrium of the EV® Thesecorrectionstend to zerat &, /g, - O, i.e, when

q, = SnT dT
‘ 2muZ dz’

(39)

The second term irEq. (37) describes the Ettingshausen efféci.e. the heat transfer in the imction
perpendicular to the temperature gradient.
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VI. Numerical Study of theElectrostatic Electron Cyclotron Instability

A. Motivation

A practicalapplicationof the corrections to the transport coefficients due to the nonequilibrium character of the
obtaineddistribution functionis restrictedby the accepted conditionsf the stationary state arabsence of the
plasma gradients along the drift velocifyhe narrow range dahe applicability of tte obtainedresuls is directly
related to the impossibility od strict hydrodynamic description of threectron flowcharacterized by large Hall
parametersin order thathydrodynamic description be true, one or anotm@rcessn plasma should result in the
establishment of some univerd&WDF thatis characterized yoseveral integral magnitudds.is important thereat,
that this distribution would established in a time substantially lesser than the characteristic time sifdrgmn
stationary processes, and at distances that are considerably smaller thaardbeeristic dimensions of the flow
heterogeneityln classical hydrodynamics, the closeness of the distribution function to equilibrium is maintained by
frequent collisionsvith the short mean free patm the Hall discharge the collisions are rare, asdve have seem
rapid cyclotron rotation does not ensure the similarity of the resulting distribution functions.

However, colligons are not the only process, as a result of which the EVDF can acquireisioersal formata
short time and at short dénces.In principle, sich a process can consist development of smalcale high
frequencyelectrostatikinetic instabiliy. In the magnetizeplasma with Maxwellian EVDFhe electrostatigvaves
pertain to stablescillationg®. However,in severalstulies it has been shown ttihe electrostatic electron cyclotron
instability involving Bernstein modes may arise due to a deitetion ring or thermal ring electron distributiS#.

The form of the distribution function with the shape of the crataginéd in the present paper, is close to the form
of the thermal ring.Therefore,it was interesting tasstudy the stability of the obtainedVDF andto tracethe
evolution of tlis functionif the instability does occulf in the process ofhe instability developmenthe EVDF is
modified to some universal forng promising task is to find this form and calculate the corresponding expressions
for thetensors ofviscosity and thermal conductivitin this case, arospect othejustified use of the hydrodwamic
approach tdhe electron flondescriptionin the Hall type discharge may open.

We are planning systematical study of the instability for niest commonEVDF given by Eq.(21) as a
direction of the future workTo check whether there is a high freqoemlectrostatic instability at all for a given
type of the distribution function in this study we are investigating the stability of the asymptotic function (23) that
corresponds to a homogeneous plasma in the limit of very rare collisions.

B. Dispersion Rdation
The EVDF given by Eq. (23)fter integration over speag|, and returning to the dimensional variablakes the

form

a c2+W?§, ac,wWa
f(c.)= exp@ " & a (40)
VT2b VT2b 8 O?Vfb 8

This function depends only on the relative velocity modigle The general dispersiorelation for Bernstein

modespropagating perpendicular to the magnetic fielthomogeneous and collisionless pladiorathe case when
the distribution function depends only on the velocity modisigéven by®

5
&R

ufo 8K
nch J ", + _1W2 ) J‘?W

C

, (41)

where J; is the Bessel function of the first kind of order
We numerically solved the dispersion relation (41) with EVDF given by Eq. (40) for four values of the ratio
w=W\,, =2,34,5. The plasma to cyclotron fgeency ratiOWp/WC = \/nez/eom/(eB/m) was set to 1@vhich

is typical value for the Hall type discharge Figure 7 showsthe dispersion curves obtainedhe real frequency
(black) and growth rate (blue) normalized to cyclotron frequengyare plotted versus normalized wave number

kKW/w, .
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Figure 7. The normalized real frequency (blak) and growth rate (blue) for Bernstein waves plotted versus
normalized wave number keeping(Wp /WC) =10 and varying w=WA\/,,: W20, (b) w=3.0;

(c) w=4.0; (dyw=5.0.

At relatively high thermal spreadn(= 2, 3) the roots of the dispersion relation are real and waves are stable like

the classic Bernstein modes with Maxwellian transveldecity distribution. As the thermal spread is reduced
(w=4,5) the imaginary parts of the roots appear and solsbecomeabsolutelyunstablelt means that the waves

will grow in time to amplitudes limited only by the validity of thenall-signal theory which has been used in
obtaining the dispersion relation (4The imaginary frequency components in the considered cases are very strong.
Indeed, vinen the parametew is equal to 4, the imaginary component o/, ) reaches-0.3 which corresponds

to the growth rates of16 dB per cyclotron period.

To study the nonlinear saturation of the wave electric field and the EVDF evolution in time theing
development of instabilitywe developed a 1D2\{one space and two velocity dimensions) paricieell
simulation code.

C. Numerical Model and Simulation Results

As in the previous consideratiomge choose an orthogonal coordinate system in whictutiiferm magnetic
field B andthe uniformelectricfield E aredirected along th&-axis andz-axis, respetively. The spatial variation
of the electron space charge arattprbation of the electric fiele in they direction. The ions are immobile and
constitute a uniform charge neutralizing background. The electron collisions are neglected Wwecaeserested
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in the electrostatic high frequency oscillaticaisshort time period which is much less titae mean fredime
between collisionsin absence of the collisions theectronvelocity along the magnetic fielts constant and
therefore we excludethe x-component of the velocity from consideratidxtceleration by the Lorentz force was
integrated using the-gtep Boris method. Particle position was computed using the Leapfrog métteopbtential
variation is obtained by integrating the Poissonatign. On the ends of the spad®mainwith length L the
periodical boundary conditions were specified.

Electrons were loaded in such a way to provide sinusoidal distribut'ralmo(l+gsin(ky)) in the space anthe

distribution gven by Eq. (23) in velocity spacélere k =2p/L is a wavenumber.The undisturbed electron
number densityn, was equal to the ion background number densite disturbance factog was adjusted inueh

a way to provide the initial amplitude of theaveelectric field componeng, =10°E,, where E; =./n,T/e,

is the characteristic thermal electric field. The numbercalfs was setto provide the cell size not higher
than 0.5/, . One period of the electron plasma oscillatiovess resolved by approximately 50 time steps and the

total simulation time reachescyclotron periodsSimulation consisted of5Q0° particles.The simulationsvere
performedat a domain lengthcorresponding to thevave numberk=4.5(WC/\N). The plasma to cyclotron

frequency ratio (Wp /Wc) was set to 10A series of calulations was performed for the EFDV (23) with

w=123456.

Figures 8 ard 9 show theresults of simulationdOn each element of tHegures in the bottom the evolution of
the normalizedwave energy in time is showithe time in the wave energy diagram is expressed in units of the
cyclotron rotation periO((WCt)/(Zp). The normalized wave electric field energy was calculated as the ratio of the

wave electric fieldenergy e. to its value at the initial timeg, . In the topof each element of the figurdsur

diagrams with thedistribution function calculated in the middle of the space domain at the times moments
corresponding to 0, 2, 4, and 6 of the cyclotron perar@gsshownln order not to clutter the drawing, we did not
show in theEVDF diagrams the axes and the coloales.On the parameters of tleectron velocityaxes, one can

get a representation based on Figurés All distribution functions are normalizexh the maximum value and the
color scale corresponds to the scale shown in Fig. 1.

As can be seen from Fig8&9, the results of numerical simulation are consistent with the conclusions obtained
from the analysis of the dispersion relation. /=3 and less, the wave is stable, and wt=4 and higher
instability develops.

In all the analyzedegimesthe Landau damping occurs in the initial period of time. Then the attenuation ceases
and the wave passes to the stationary oscillation regime.

At w=3 and lesghe stationary undamped oscillations continmehanged for many cyclotron periods. The
form of theEVDF does not change appreciably in this case, retaining theliikera flattened Gaussian distribution
(w=1) or the shape of the cratew = 2, 3).

At w=4and higherafter the initial damping, the wave energy begins to increase and, even during the first
period of cyclotron rotation, begins to exceed the energy of the initial perturb@tien.the energy of the wave
increases and within one or twayclotron periods reaches nonlinear saturatibme initial annular form of the
distribution function begins to deform and approximately aftérc§clotron periods, thEVDF acquires a complex
fuzzy shape.

The calculations show that both the total eneagg the total entropy of the system remain constant within the
limits of the accuracy of the calculations and the error associated with numerical hEatirall the presented
results, the energy conservation law is performed with relative accuracy 1@ ‘toThus, when an instability
occurs, the distribution function does not tend to an equilibrium distribdtidhis case the EVDF is isentropically
transformed to some other kind, the properties of which can be the subject of festerch.

Another direction for future research will be analysis of the instability for distribution functions, taking into
account the electron number density and temperature gradients. The skewing of the walls of the crater for these
functions can becue a factor that significantly influences the development of instability.
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Figure 8. The evolution of thenormalized wave energy in timeand the EVDF diagrams at specified time
moments(more explanation in the text) (Q ; (b) ; (C)
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