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Abstract:  The electron velocity distribution function in the low-pressure discharges 

with  the crossed electric and magnetic fields, which occur in magnetrons, plasma 

accelerators and Hall thrusters with closed electron drift, is not Maxwellian. A  deviation 

from equilibrium is caused by a large electron mean free path relative to the Larmor radius 

and the size of the discharge channel. In thi s study, we derived in the relaxation 

approximation the analytical expression of the electron velocity distribution function in a 

weakly ionized Lorentz plasma with the crossed electric and magnetic fields in the presence 

of the electron density and temperature gradients in the direction of the electric field. The 

solution is obtained in the stationary approximation far from boundary surfaces, when 

diffusion and mobility are determined by the classical effective collision frequency of 

electrons with ions and atoms. The moments of the distribution function including the 

average velocity, the stress tensor, and the heat flux were calculated and compared with the 

classical hydrodynamic expressions. A theoretical study is presented of the electrostatic 

electron cyclotron instability involving Bernstein modes for the obtained distribution 

function in the spatially uniform plasma. Particle-in-cell simulations were used to study the 

nonlinear evolution of the instability.  

Nomenclature 

Tn AA ,  = expressions in the distribution function formula  

b  = subscript related to the electron ñbirthò distribution function 

B  = magnetic field  

ʩ = electron velocity in a reference frame moving at a drift velocity 

e = elementary charge 

E  = electric field  

TE  = characteristic thermal electric field 

F  = dimensionless electron velocity distribution function 

f ,
bf  = electron velocity distribution function and electron birth distribution function respectively 

kI  = modified Bessel function of the first kind of order k 

kJ  = Bessel function of the first kind of order k 

L  = space domain length in the simulation model 

m  = electron mass 
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n  = electron number density 

ijP  = stress tensor component 

p  = pressure 

q  = heat flux 

r  = radius vector 

S  = collision term 

T  = temperature 

t  = time 

u  = dimensionless electron velocity in a reference frame moving with the drift velocity 

V  = average electron flow velocity 

TbV  = average electrons thermal velocity, which they acquire after the collision 

v  = dimensionless electron velocity 

W  = electron drift velocity in the crossed electric and magnetic fields 

w  = dimensionless electron drift velocity in the crossed electric and magnetic fields 

a = parameter of the ñthermal ringò distribution function 

ija  = coefficients in the stress tensor formula 

b = parameter reciprocal of the Hall parameter 

ijg = coefficients in the stress tensor formula 

qVc DDD ,,  = kinetic corrections to the transport equations 

ijd  = Kronecker delta 

0e = permittivity of free space 

De  = characteristic electron drift energy 

Ee  = wave electric field energy 

ie = ionization energy 

Te = characteristic energy of the electron thermal motion 

xe  = average electron energy loss in the excitation collisions 

z = dimensionless coordinate z  

ijh  = coefficients in the stress tensor formula 

Dl  = Debye length 

n = effective collision frequency 

ixeq nnnn ,,,  = Coulomb, elastic, excitation and ionization collision frequencies respectively 

ɝ = electron velocity 

c = auxiliary phase angle characterizing the position of an electron on a cycloid 

y = phase angle characterizing the position of an electron on a cycloid 

ʩw  = electron cyclotron frequency 

pw  = electron plasma frequency 

I. Introduction  

HE study of weakly ionized plasma in the crossed electric and magnetic fields is of great importance for the 

simulation of magnetrons, plasma accelerators and Hall thrusters1,2. In these devices, the discharge is 

maintained by applying a constant potential difference between the anode and the cathode. The external constant 

magnetic field has a direction predominantly perpendicular to the electric field. The electrons drift in the crossed 

fields and ionize the neutral atoms. The ions are accelerated under the influence of the applied potential difference 

and form together with the electrons an electrically neutral plasma stream. The neutral atom density in these devices 

is kept sufficiently low providing rare ion-atom collisions to effectively accelerate the ions. Due to a low pressure of 
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neutral gas, electron-atom collisions are also rare and the electron Larmor frequency is many times higher than that 

of collisions of electrons with atoms, ions, and the discharge channel walls. Therefore, the Hall discharge plasma is 

characterized by high values of the Hall parameter, which is the ratio of the electron Larmor frequency to the 

momentum transfer collision frequency. 

At present, the problem of numerical modeling of plasma dynamics in the Hall discharge has not been 

completely solved3. The main obstacle is the problem of modeling the motion of electrons. The modeling of the 

electron flow in the kinetic approximation is extremely time consuming. The so-called "hybrid" models, in which 

the motion of electrons is simulated in the hydrodynamic approximation, and heavy ions and neutral atoms are 

considered as particles, provide a significant advantage in volume and speed of calculations4-11. However, the use of 

the classical equations of hydrodynamics is justified only in those cases when the distribution function of the 

simulated particles is close to equilibrium. It takes place either at a high collision frequency or by the availability of 

some other processes that lead to a rapid relaxation of the distribution function toward equilibrium. A relatively low 

frequency of the electron momentum transfer collisions and, accordingly, a large electron mean free path compared 

to the Larmor radius and the size of the discharge channel can cause significant deviations of the electron velocity 

distribution function (EVDF) from equilibrium. 

The electron distribution function in the Hall discharge plasma is usually studied numerically12,13. The general 

approach to the derivation of analytical expressions assumes a small deviation of the EVDF from equilibrium14-16. 

This assumption is not entirely true for the Hall discharge plasma in which the deviation from equilibrium is big and 

may lead even to the nonmonotonic behavior of the electron energy distribution function17. Several studies18,19 have 

been devoted to the influence of secondary electron emission from the discharge channel walls on the formation of 

an anisotropic EVDF. However, anisotropy of the EVDF may occur in the absence of walls too because of the 

fundamental characteristics of the electron motion in the crossed electric and magnetic fields. 

In this work, we do not set the task of reconstructing in detail the form of the distribution function in the Hall 

type devices. There are many factors influencing on the movement of electrons in a real discharge. These include, 

for example, the following factors: inhomogeneity of the electric and magnetic field; centrifugal forces in the 

devices with annular discharge channel; electron diffuse scattering and secondary electron emission on the walls of 

the discharge channel; longitudinal plasma oscillations and azimuthal waves. Such a complex problem can be solved 

only by numerical methods. Our goal is to reveal the principal differences between the Maxwellian distribution 

function and the distribution function in a weakly ionized plasma with crossed electric and magnetic fields where 

collisions with heavy particles are dominant. Further, to indicate this type of plasma, we will use the term ñHall 

discharge plasmaò. 

Earlier we derived an analytical expression of the EVDF for the case of a weakly ionized Lorentz plasma in the 

spatially uniform approximation20. The aim of this paper is to extend the previously obtained results to the case of a 

non-uniform plasma and calculate the EVDF in the presence of the electron number density and temperature 

gradients in the direction of the electric field. Since the distribution function may be nonmonotonic at some plasma 

parameters, we also investigated the electrostatic electron cyclotron instability involving Bernstein modes caused by 

this distribution. The purpose of this study was to understand if there is any universal form to which the distribution 

function approaches, if the instability does occur. 

The paper is organized as follows. First, the kinetic equation is described and the statement of the problem is 

formulated in Sec. II. In Sec. III, the kinetic equation is solved and the EVDF is obtained. In Sec. IV, the shape of 

the EVDF at different conditions of the problem is considered. In Sec. V, the moments of the EVDF are calculated. 

In Sec. VI, the electrostatic electron cyclotron instabilities are studied theoretically and using 1D2V particle-in-cell 

simulation model.  

II.  Formulation of the Problem 

A. Kinetic Equation 

In a plasma of the Hall type, the number density of neutral atoms is approximately one or two orders of 

magnitude higher than the number density of charged particles. Typical parameters of such a plasma are considered 

in detail, for example, in Ref. 21. At characteristic electron energies above 10 eV in such a plasma, the effective 

frequencies of Coulomb electron-electron and electron-ion collisions are tens of times smaller than the electron-

atom collision frequency. For this reason, no rapid maxwellization of electrons occurs in the Hall type plasma. 

Because of the smallness of the Coulomb electron-electron collisions frequency, electrons rarely exchange energy 

among themselves, and much more often, the energy of the electrons directed drift is converted into thermal energy 

because of collisions with heavy slow particles. 
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Since most of the collisions are not Coulomb ones and scattering not occurs at small angles, in the kinetic 

numerical models of the Hall discharge the Fokker-Planck equation is not usually used. The exact kinetic Boltzmann 

equation is also usually not used because it is rather complicated and requires taking into account the differential 

cross sections for different types of collisions, which are poorly known. Therefore, simplified models are usually 

used to describe the electron-atom collisions. These models operate with effective collision frequencies, and the 

most common assumption is the isotropic distribution of the scattered electrons. Such simplifications are, in fact, 

very close to the basic assumptions on which the Bhatnagar-Gross-Krook (BGK) collision model is based22. 

Our formal set up is as follows. We consider a weakly ionized plasma in the presence of the uniform crossed 

electric and magnetic fields. The electron diffusion and mobility are determined by the classical effective collision 

frequency. The density of the gas, the degree of ionization and the strength of the fields are assumed to be such that 

electron collisions with heavy particles are dominated. Under these conditions, the Boltzmann type kinetic equation 

for the electrons with the BGK collision term can be written in the form 

 ( ) ( )ff
f

m

ef

t

f
b-=

µ

µ
³+-

µ

µ
+

µ

µ
n

ɝ
BɝE

r
ɝ , (1) 

where f  is the electron velocity distribution function; r  is the radius vector; ɝ is the velocity vector; E  is the 

electric field; B  is the magnetic induction vector; n is the effective frequency of collisions; 
bf  is the so-called 

electron ñbirthò distribution function (EBDF) which describes the velocity distribution just after collision. The 

EBDF is assumed to be locally equilibrium, i.e. 

 ( ) ( )22232 exp TbTbbb VVnf ɝ-=
-

p , (2) 

where mTV bTb 2=  is the average thermal velocity of the electrons, which they acquire after the collision. Since 

the average velocity of the ions and neutral atoms substantially less than the velocity of the electrons, here it is 

assumed that the average electron velocity vector after the collision is equal to zero. 

When analyzing the non-equilibrium distribution functions, we will use the standard definition of the 

hydrodynamic macroparameters accepted in the kinetic theory23: ñ= ɝdfn  is the electron density; 

( )ñ= ɝɝV dfn1  is the average velocity; ( )( ) ɝdfVVmP jjiiij ñ --= xx  is the stress tensor; 

( )3zzyyxx PPPp ++=  is the pressure; nPT iii =  is the i- th component of the temperature; npT=  is the 

average temperature (all temperatures are expressed in energy units); ( )( )( )ñ --= ɝVɝVɝq dfm
2

2  is the heat 

flux vector. 

The most important types of electron collisions in a Hall type discharge are elastic, excitation and ionization 

collisions with atoms, and Coulomb collisions with ions. Thus, we take the effective collision frequency as the sum 

ixeq nnnnn +++=  of the Coulomb, elastic, excitation and ionization frequencies respectively. To describe these 

collisions within the BGK model the collision term () ( )fffS b-=n  must satisfy the following conservation laws: 

 () ndfS in=ñ ɝ ;     () Vɝɝ ndfS n-=ñ ;     () ( )ndfS
m

xxii enen
x

+-=ñ ɝ
2

2

, (3) 

where 
xe  is the average energy loss in the excitation collisions, and  

ie is the ionization energy. The second 

relationship in Eq. (3) is fulfilled automatically for ()fS  under consideration. The first and the third relationships 

lead to the following equations: 

 nn i
b

n

nn+
= ; (4) 
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Thus, Eqs. (1), (2), (4) and (5) form a closed system of equations to be solved.  

Before we go to solving, we will write a set of hydrodynamic equations that follow from the kinetic equation (1). 

Availability of this set will allow comparing the values of the diffusion rate, mobility, and thermal conductivity 

calculated in the hydrodynamic and the kinetic approximations. 

B. Equations of Moments 

After multiplying Eq. (1) by the electron mass m , momentum ɝm  and energy 22xm  and integrating over 

velocities, we obtain the following system of equations 
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 (6) 
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Let the electric field and the magnetic field be uniform and perpendicular to each other, and the plasma have the 

electron number density and temperature gradients only in the direction of the electric field. We choose the 

orthogonal coordinate system, in which the magnetic field is directed along the x-axis, and the electric field is 

directed along the z-axis. Taking Eq. (7) for the velocity components lying in a plane perpendicular to the magnetic 

field and neglecting the convective derivatives dzdVy
 and dzdVz

 in the stationary approximation we obtain: 
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÷
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nnw
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22

, (9) 

where meBʩ=w  is the electron cyclotron frequency. 

When studying the Hall type discharge, in Eq. (9) it is usually assumed that ( )22

ic nnw +>> . It is also assumed 

that the electron temperature is isotropic. It allows simplifying the stress tensor by recording it as the product of the 

unit tensor on the pressure nTP jkjk d= . The result is a classic expression for the diffusion rate across the magnetic 

field 

 
( )

ö
÷

õ
æ
ç

å
+

+
-=

dz

nTd

mn
E

m

e
V

c

i
z

)(1
2w

nn
, (10) 

which is most often used in the hybrid and hydrodynamic models.  

Note that although the model collision integral in Eq. (1) includes the total electron collision frequency 

ixeq nnnnn +++= , the expression of the mobility and the diffusion rate (10) includes not this frequency, but the 

frequency ( )inn+ . Thus, in the hydrodynamic approximation the effective electron collision transport frequency 

must include the doubled ionization collision frequency. We call attention to this, because in all publications, known 

to us, the frequency n was used in the macroscopic transport equations. This inaccuracy does not usually lead to a 

significant error in the solution of one-dimensional and two-dimensional models, as to account for the anomalous 
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conductivity these models include an additional empirical frequency 
cK wn aa= , which is more than an order of 

magnitude greater than the classic collision frequency. In this case the unaccounted additive to the effective 

transport frequency becomes unnoticeable against the background of the large magnitude of 
an . However, in the 

three-dimensional models, as well as in the two-dimensional, in which one of the coordinates is the azimuth 

direction angle, there is no need to use the anomalous collision frequency, and the mentioned correction may play a 

significant role. 

III.  Solution of the Kinetic Equation 

To calculate the distribution function, we will use the integral form of the kinetic equation. At a constant 

collision frequency, away from the boundary surfaces the distribution function, which satisfies the equation (1), may 

be represented in the form of the integral along the electron trajectory in the phase space
23 

 ( ) ( ) ( )[ ]ñ
¤-

--=

t

b dttttftf 11111 exp,,,, nn ɝrɝr , (11) 

where 
1r  and 

1ɝ are the coordinate and velocity of the electron at the time tt <1
. 

We seek a stationary solution of this equation in the uniform crossed electric and magnetic fields. As in the 

previous section, we choose an orthogonal coordinate system in which the magnetic field B  and the electric field E  

are directed along the x-axis and z-axis, respectively. Then the phase trajectory is described by a system of 

equations: 
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1

cc
, (12) 

where ( )0,,0 BE=W  is the electron drift velocity in the crossed electric and magnetic fields in the absence of 

collisions, and the following notations are introduced:  
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÷
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Substituting the equilibrium EBDF from Eq. (2) into Eq. (11) we get  

 ( ) ( ) [ ]ñ
¤

-
--=

0

2

1

2

1

232

11 exp, ybyxpb dVVnf TbTbbɝr , (13) 

where 
ʩwnb=  is a reciprocal of the Hall parameter. In this expression, the values of 

1bn  and 
1TbV  are taken at the 

point 
1r . 

If the plasma parameters have gradients only in the direction of the electric field, the improper integral in 

Eq. (13) can be reduced to the integral over a period of the cyclotron rotation. Really, since the values of 
1bn  and 

1TbV  depend only on the coordinate 
1z , then due to Eq. (12) they are periodic functions of the phase y. The 

velocity vector 
1ɝ according to Eq. (12) is also a periodic function of y and therefore Eq. (13) can be written as 

follows: 

 () ( )ybyyb df ñ
¤

-F=
0

exp , (14) 
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where () ( ) ( )2

1

2

1

232

11 exp TbTbb VVn xpy -=F
-

 is the periodical function of y. Rewriting the integral in Eq. (14) as 

the sum of the integrals over period, we obtain 

 () ( )[ ]
[ ]
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=+-F=
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2

00

2

0
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 (15) 

and then Eq. (13) takes the form: 
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232

11 exp
2exp1

dVVnf TbTbb
. (16) 

In the uniform crossed electric and magnetic fields the electron trajectory is a trochoid. In Eq. (16), the integral is 

calculated along a part of the phase trajectory, which corresponds to a single period of the trochoid in the coordinate 

space. If the plasma parameters vary little over distances of the order of the trochoid height, the integrand in Eq. (16) 

can be represented as the Taylor series on ( )zz -1
. Restricting ourselves to linear terms of the expansion, we obtain: 

 ( )
[ ]
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1
2exp1

. (17) 

The coordinates difference ( )1zz-  and the velocity square 2

1x  may be expressed through the phase y, with the 

help of Eq. (12) as follows: 

 ( )jc
w

coscos1 -=- ^

c

c
zz , (18) 

 cx cos2222

1 ^++= WʩWʩ , (19) 

where ( )yz ccarctan-=yc ; 22

zy ccc +=^ . For convenience of the further analysis, we will use the following 

dimensionless variables: 

 
bTb nVfF 3= ;        

TbVcu= ;         
TbVWw= ;         uwv += ;         

Tbc Vzwz= . (20) 

After substituting Eq. (18) and Eq. (19) to Eq. (17) and changing the variables according to Eq. (20), the ultimate 

expression of the distribution function takes the form: 

 ( )
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where  

;cosc^-= uuA yn
         ;2coscos 210 cc TTTT AAAA ++=  

;
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÷
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-+= wuuwuA yT
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õ
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ç

å
--+-= ^ yT wuwuuA         2

2 ^-= wuAT
. 

In the Hall type discharge the momentum transfer collision frequency is much smaller than the Larmor 

frequency, so, our interest is in the asymptotic form of the distribution function at 0­b . In this case, we have 

( )[ ] ( )ppbb 212exp1 ­--  and the dimensionless EVDF takes the form:  
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where ( )( ) ( )ñ ^^ =

p

p
0

)cos(cos2exp12 dtkttwuwuI k
, 2,1,0=k  are the modified Bessel functions of the first 

kind. The asymptotic distribution function (22) has a particularly simple form in a homogeneous plasma: 

 ( )
( )^

^---
= wuI

uuw
F x 2

exp
023

222

p
. (23) 

This form is somewhat like the form of distribution function, called the "thermal ring"24   

 ( ) ,...2,1,0,exp
!

1 22

2

2

)( =-ö
÷

õ
æ
ç

å
= ^

^ ju
u

j
F

j

j

th a
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, (24) 

which is used in studying cyclotron harmonic phenomena in magnetized plasma25,26.  

IV.  Structure of the Distribution Function 

In the absence of a birth temperature gradient, Eqs. (21) and (22) contain a velocity component 
xu  only in the 

factor ( ) ( )222 exp~exp xuuw ---  . Therefore, in the direction of the magnetic field the EVDF is Maxwellian. At 

arbitrary values of the Hall parameter in the presence of the birth temperature gradient, the Maxwellian character of 

the EVDF in the direction of the magnetic field is disturbed because the coefficients 
0Tɸ , 

1Tɸ  depend on a square 

of the velocity 2u , which includes the term 2

xu . But also in this case, the electron velocity distribution along the 

direction of the magnetic field remains symmetrical with respect to the velocity 
xu .Therefore, in this section we will 

consider the EVDF in a plane perpendicular to the direction of the magnetic field, calculating it at 0=xu . Also, for 

better clarity of the diagrams we will normalize the EVDF to its maximum value. 

A. Spatially Uniform Plasma 

In spatially uniform plasma, the dimensionless distribution function depends on the two parameters: 
ʩwnb=  

and ( ) ( )bTb TmBEVWw 2== . The distribution function in the limit of rare collisions 0­b  
calculated with 

using Eq. (22) for spatially uniform plasma is exemplified in Fig. 1. 

In the absence of the electric field ( 0=w ) the distribution function is Maxwellian. In the presence of the electric 

field, a maximum of the function becomes flatter with the increasing parameter w , and at some point, the EVDF 

acquires a crater shape. The reason for the formation of such a form is illustrated in Fig. 2. 

 

 
Figure 1. EVDF in the uniform plasma at 0­b : (ʘ) 0.0=w ; (b) 0.1=w ; (c) 5.1=w ; (d) 0.2=w . 
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In the absence of the electric field ( 0=w ) 

the distribution function is Maxwellian. In the 

presence of the electric field, a maximum of the 

function becomes flatter with the increasing 

parameter w , and at some point, the EVDF 

acquires a crater shape. The reason for the 

formation of such a form is illustrated in Fig. 2. 

Figure 2(a) shows in the coordinate space the 

electron trajectories in the shape of a trochoid 

that are distinguished by different initial 

velocities. Here and in all subsequent examples, 

it is believed that 0>xB  and 0>zE . The 

projections of the relevant phase trajectories on 

the corresponding plane in the velocity space are 

shown in Fig. 2 (b). On the so-called prolate 

trochoid, shown by a dashed line in Fig 2 (a), some of the characteristic points are numbered. On the right side of the 

figure, corresponding points in the velocity space are depicted.  

A continuous line shows a cycloid, in which electrons move with the zero initial velocity after collision. In the 

limiting case of perfectly inelastic collisions, for example, when all the electron energy is spent on ionization and 

excitation, the initial velocity after the collision 
TbV  is close to zero and we have 1>>w . In this case, the 

distribution function differs significantly from zero in a small neighborhood of the circle, which corresponds to a 

trajectory in the form of a cycloid shown in Figure 2 (b) with the continuous line. Therefore, the EVDF has a crater 

shape with narrow walls. The number of electrons moving in the prolate and curtate trajectories, shown in Figure 2 

by the dashed and dotted lines, respectively, grows with the increase of the average EBDF thermal velocity 
TbV . In 

the velocity space, this leads to a broadening of the EVDF crater walls. In the limit 0­w , when the average birth 

thermal velocity is much higher than the drift velocity, the crater walls merge, as the width of the walls becomes 

much greater than the distance between them and EVDF becomes close to Maxwellian. 

Figures 3 and 4 show the EVDF calculated with using Eq. (21) at the finite collision rate for spatially uniform 

plasma at 1=w  and 2=w  respectively for several values of the parameter b. 

 
Figure 3. EVDF in the uniform plasma at 0.1=w  for several values of the parameter b.. 

 
Figure 2. Projections of some typical phase trajectories of 

electrons on: (a) the coordinate plane, perpendicular to the 

magnetic field; (b) the corresponding plane in the velocity 

space. 
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Figure 4. EVDF in the uniform plasma at 0.2=w  for several values of the parameter b. 

 

At a high collision frequency, the distribution function is close to equilibrium and has a small shift of the 

maximum along the circumference that corresponds to a cycloid trajectory with the zero initial speed. The vector of 

this displacement determines the components of the drift velocity and mobility. With the decrease of the parameter 

b, i.e., at the reduction of the collision frequency, as compared to the Larmor frequency, the region occupied by 

comparatively high values of the EVDF extends along the circumference which corresponds to a cycloid trajectory. 

In the limit of rare collisions, the EVDFs tend to the asymptotic functions shown in Fig. 1. Thus, the asymptotic of 

the EVDFs shown in Fig. 3 at 0­b  is the function shown in Fig 1(b).  The asymptotic of the EVDFs shown in 

Fig. 4 at 0­b  is the function shown in Fig 1(d). At this limit  the drift velocity tends to the value of BEW= , 

and the velocity component along the electric field tends to zero. 

B. Plasma with Electron Number Density and Temperature Gradients 

Now we consider the effect of the electron number density and temperature gradients in the direction of the 

electric field on the EVDF. For brevity, we will use the notations ( ) ( ) zddnnn bbb 1ln =
¡

, and 

( ) ( ) zddTTT bbb 1ln =
¡

.  

Figure 5 shows the examples of the EVDF in the limit of rare collisions ( 0­b ) at ( ) 1.0ln =
¡

bn , ( ) 0ln =
¡

bT  

In the absence of the electric field ( 0=w ) the EVDF is close to Maxwellian distribution and has a slight 

displacement in the direction 
yv  that corresponds to the speed of the diamagnetic drift. In the presence of the 

electric field, the direction of the diamagnetic drift coincides with the direction of the drift in the crossed electric and 

magnetic fields. The comparison of the distribution functions calculated in the absence and the presence of the 

electron number density gradient gives the best visual representation of distinctions between the two types of drift. 

Comparing the diagrams in Fig. 1. and Fig. 5, we see that the drift in the crossed BE³ -fields appears as a 

displacement of the crater center from the origin, and the diamagnetic drift corresponds to the skewed heights of the 

crater walls. 

.  
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Figure 5. EVDF at ( ) 1.0ln =
¡

bn ; ( ) 0ln =
¡

bT ; 0­b : (ʘ) 0.0=w ; (b) 0.1=w ; (c) 5.1=w ; (d) 0.2=w . 

 

 

Figure 6. EVDF at ( ) 0ln =
¡

bn ;( ) 1.0ln =
¡

bT ; 0­b : (ʘ) 0.0=w ; (b) 0.1=w ; (c) 5.1=w ; (d) 0.2=w . 

 

Figure 6 shows the examples of the EVDF in the limit of rare collisions ( 0­b ) at ( ) 0ln =
¡

bn , the 

temperature gradient ( ) 1.0ln =
¡

bT , and 0.2;5.1;0.1;0.0=w . An interesting feature of the distribution function in 

the absence of the electric field ( 0=w ) is a small shift of the maximum of the distribution function toward the 

region of negative values of the velocity component 
yv . At the same time, the average velocity component 

yV  

calculated numerically for this distribution function is greater than zero, which is consistent with the classical 

theory. 

V. Moments of the Distribution Function 

Macroparameters of the obtained distribution function can be calculated analytically. The resulting integrals are 

reduced to the Laplace transform of functions in the form ( )( )nm
yy cossin , where ,...2,1,0, =nm . Another way 

of calculating the moments based on the use of the saddle point approximation, in which the explicit form of the 

distribution function was not calculated, was described in Ref. 27. The expansions of macroparameters in terms of 

the powers of the ( )1zz- , contained the members up to the second order inclusive. Therefore, the resulting 

expressions of moments included the first and the second derivatives of the EBDF macroparameters. In this paper, 

we present the expressions obtained by direct integration of the function (21), which contain only spatial derivatives 

of the first order. For convenience of the comparison with classical expressions, all the macroparameters are 

presented in the dimensional form. 

A. Electron Number Density 

Integration of the function (21) over speed yields the following expression for the electron number density: 

 

dz

dn

m

eE
nn b

c

b 22

1

nw +
+= . (25) 
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If the electric field is zero, from Eq. (25) it follows, that nnb = , which, according to the mass conservation law 

(4), corresponds to the condition 0=in . Since Eq. (25) corresponds to a stationary solution of the kinetic equation, 

we can conclude that if the electric field is zero, a stationary state is possible only in absence of ionization. If 0̧E , 

then eliminating from Eq. (25) the number density 
bn  by means of Eq. (4), we get: 

 ( )
eE

m

dz

dn

n i

ci

nn

nwn

+

+
-=

22
1

. (26) 

Thus, from Eq. (26) it follows that in the presence of ionization collisions ( 0>in ) the steady state may be reached, 

if 0<dzdn , i.e. with a decrease of the electron number density in the direction of the electric field. 

B. Average Velocity 

In the case of an arbitrary value of the Hall parameter, the expressions of the macroparameters are very 

cumbersome27. Therefore, in the following we consider the case of high Hall parameters, which is typical for 

magnetrons and Hall type plasma sources. In this limit, the average velocity components in the plane perpendicular 

to the magnetic field, expressed in terms of the EBDF parameters, have the form: 

 

dz

dT

mdz

dn

nm
mWTWV b

c

b

bc

by
ww

11

2

1 2 +ö
÷

õ
æ
ç

å
++= . (27) 
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è
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õ
æ
ç
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dz

dT

mdz

dn

nm
mWTWV b

c

b

bc

bz
ww

b
11

4

1 2 . (28) 

The velocity component 
xV  equals zero, since the EVDF is symmetrical with respect to the velocity

xx. 

Substituting the EBDF parameters from Eqs. (4) and (5) into Eq. (28) and neglecting the convective derivatives 

dzdVy
 and dzdVz

, we get the following expression for the diffusion rate in the direction of the electric field: 

 ( )
( ) ù

ú

ø
é
ê

è
+D+D--

+
-=

dz

dT
n

dz

dn
T

mnm

eE
V Vc

cc

i
z 1

1
22 w

n

w

nn
, (29) 

where   

T

ii

T

xx

c
ne

en

ne

en
+=D ;   

T

Di
V

e

e

n

nn
ö
÷

õ
æ
ç

å +
=D

4

913
.   

 For convenience of the results interpretation, we introduced here the characteristic energy of the thermal motion 

23TT =e  
and the characteristic drift energy 22mWD =e . 

Comparing this expression with Eq. (10), we see that the hydrodynamic and kinetic approaches provide the same 

magnitude of the electron mobility caused by the electric field. In both cases the effective collision frequency, which 

determines the mobility, is equal to the sum ( )inn+ , i.e. it includes the doubled frequency of ionization collision. In 

case 0=dzdn , the expressions of the diffusion rate caused by the temperature gradient in hydrodynamic and 

kinetic approximations also have a similar form. The diffusion rate caused by the electron number density gradient 

contains an adjustment 
cD  that takes into account inelastic collisions, as well as the kinetic correction 

VD  due to the 

non-Maxwellian nature of the distribution function. It has been revealed above, that for 1<<w , i.e. when the 

energy of the directed drift velocity is much smaller, than the thermal energy (
TD ee << ), the EVDF tends to the 

Maxwell function. In the case 0­DV
 and in the absence of inelastic collisions, Eq. (29) becomes the classical 

expression of the diffusion rate. 
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C. Stress Tensor and Temperature 

The asymptotic values of the stress tensor components expressed in terms of the EBDF parameters at the high 

Hall parameters are of the form: 

 

dz

dT
W

n

dz

dn
W

mWT
mWnTnP b

c

b
ij

b

c

ij

c

b
ijbijbbijij

w
h

w
g

w
had +ö

ö
÷

õ
æ
æ
ç

å
+++=

2
2 , (30) 

where 21== zzyy aa ; 4ba =yz
; 21== zzyy gg ; 125bg =yz

; 1=xxh ; 2== zzyy hh ; 2bh =yz
, and the 

remaining coefficients equal zero. 

These expressions explain the occurrence of kinetic correction to the diffusion rate caused by the pressure 

gradient. According to Eq. (9), the diffusion rate in the hydrodynamic approximation is proportional to the sum of 

the two gradients: ( )dzdPzzb  and dzdPyz
. In this sum, the contribution of the off-diagonal component dzdPyz

 

is usually neglected. Using Eq. (30) and considering only the first- order derivatives, we obtain the following 

expressions of these two terms: 

 ( ) ( )( ) ( )dzdTndzdnmWTdzdP bbbbzz bbb ++= 22 , (31) 

 ( ) ( )dzdnmWdzdP byz

24b= . (32) 

We see, that the contribution of the 
zzP  and 

yzP  gradients to the diffusion rate are of the same order of smallness 

in the parameter 
ʩwnb= . Therefore, a neglect of the off-diagonal component of the stress tensor under certain 

conditions may be incorrect. Since the derivative dzdPyz
 contains no temperature gradient, the component 

yzP  

does not influence on the thermal diffusion rate. As we have seen above, at the uniform electron number density, the 

thermal diffusion rate obtained in the kinetic approximation coincides with the classical expression of 

hydrodynamics.  

In the presence of the electron density gradient the contribution of 
yzP  to the diffusion rate may be neglected, if 

bTmW <<2 , i.e. when 
TD ee << . As shown above, this case corresponds to the EVDF, which is close to the 

Maxwellian one. If the drift energy 22mW  
is comparable with the EBDF temperature 

bT , the neglect of the off-

diagonal component of the stress tensor is incorrect. In this case, the EVDF differs appreciably from the 

Maxwellian, and, according to Eq. (29), the kinetic corrections to the drift velocity become significant. 

For the arbitrary Hall parameter all the three temperatures 
xT , 

yT  and 
zT  differ from each other20, 27. In the limit 

of very rare collisions the EVDF is symmetrical with respect to the velocity Wy =x , and is characterized by two 

different temperatures: 
bx TT =  and 22mWTTTT bzy +===^ . Thus, the longitudinal and transverse 

temperatures differ in the considered approximation by the value of the characteristic electron drift energy. We pay 

attention to this, since in the current hybrid models the electron temperature is usually considered isotropic.  

The steady-state solution (21) establishes a certain relation between the frequencies of elastic and inelastic 

collisions and the gradient of the mean temperature ( )3zyx TTTT ++= . For example, at 0­b  in the absence of 

ionization collisions, from Eq. (4) and Eq. (25) it follows condition 0=dzdnb
 and from Eq. (30) we obtain: 

 

dz

dTWmW
TT

c

b
w3

5

3

2

++= , (33) 

which after the substitution to Eq. (5) gives the following condition for keeping the steady state: 
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x

m

x

c

mW
dz

dTW
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+-= 2

2

7
, (34) 

The presence of a temperature gradient is explained as follows. In crossed electric and magnetic fields after the 

collisions, electrons acquire the velocity of directional drift that during subsequent collisions with slow heavy atoms 

is converted into thermal velocity. Thus, at a distance of the Larmor radius, the electrons acquire thermal energy 

corresponding to the traversed potential difference. This leads to the appearance of a temperature gradient, unless 

there are inelastic collisions that compensate for this growth. 

D. Heat Flux 

The components of the heat flux vector in the plane perpendicular to the magnetic field, expressed in terms of 

the EBDF parameters at 12 <<b  
have the form: 
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, (36) 

Substituting here the EBDF parameters from Eqs. (4), (5), we obtain the following expressions for the 

components of the heat flux vector: 
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 . 

Both components of the heat flux consist of the two terms. The first terms describe the heat flux due to ionization 

collisions. This part of the flow is not related to the temperature gradient, but is due to the electron drift. Note, that 

in the current hybrid models, the heat flux is usually neglected or assumed to be proportional to the temperature 

gradient like in the near-equilibrium flows. The second terms in Eqs. (37) and (38) are due to the temperature 

gradient. We have seen above that the presence of ionization collisions in the steady state is possible only with a 

non-zero gradient of the electron density. Therefore, both terms, in fact, arise due to the pressure gradient. 

The same correction 
cD , as in Eq. (29) accounts for the presence of inelastic collisions. The corrections 

1qD , 

2qD , and 
3qD  result from nonequilibrium of the EVDF. These corrections tend to zero at 0­TD ee , i.e., when 

the EVDF tends to the Maxwellian distribution. The second term in Eq. (38) describes the thermal conductivity in 

the direction of the temperature gradient. In the limit 0­TD ee  and in the absence of ionization collisions, this 

expression coincides with the classical expression for the heat flux23 

 

dz

dT

m

nT
q

c

z 22

5

w
n-= , (39) 

The second term in Eq. (37) describes the Ettingshausen effect28, i.e. the heat transfer in the direction 

perpendicular to the temperature gradient. 
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VI.  Numerical Study of the Electrostatic Electron Cyclotron Instability  

A. Motivation  

A practical application of the corrections to the transport coefficients due to the nonequilibrium character of the 

obtained distribution function is restricted by the accepted conditions of the stationary state and absence of the 

plasma gradients along the drift velocity. The narrow range of the applicability of the obtained results is directly 

related to the impossibility of a strict hydrodynamic description of the electron flow characterized by large Hall 

parameters. In order that hydrodynamic description be true, one or another process in plasma should result in the 

establishment of some universal EVDF that is characterized by several integral magnitudes. It is important thereat, 

that this distribution would established in a time substantially lesser than the characteristic time of large-scale non-

stationary processes, and at distances that are considerably smaller than the characteristic dimensions of the flow 

heterogeneity. In classical hydrodynamics, the closeness of the distribution function to equilibrium is maintained by 

frequent collisions with the short mean free path. In the Hall discharge the collisions are rare, and as we have seen a 

rapid cyclotron rotation does not ensure the similarity of the resulting distribution functions.  

However, collisions are not the only process, as a result of which the EVDF can acquire some universal form at a 

short time and at short distances. In principle, such a process can consist in development of small-scale high 

frequency electrostatic kinetic instability. In the magnetized plasma with Maxwellian EVDF the electrostatic waves 

pertain to stable oscillations29. However, in several studies it has been shown that the electrostatic electron cyclotron 

instability involving Bernstein modes may arise due to a delta function ring or thermal ring electron distribution30-34. 

The form of the distribution function with the shape of the crater, obtained in the present paper, is close to the form 

of the thermal ring. Therefore, it was interesting to study the stability of the obtained EVDF and to trace the 

evolution of this function if the instability does occur. If in the process of the instability development the EVDF is 

modified to some universal form, a promising task is to find this form and calculate the corresponding expressions 

for the tensors of viscosity and thermal conductivity. In this case, a prospect of the justified use of the hydrodynamic 

approach to the electron flow description in the Hall type discharge may open. 

We are planning systematical study of the instability for the most common EVDF given by Eq. (21) as a 

direction of the future work. To check whether there is a high frequency electrostatic instability at all for a given 

type of the distribution function in this study we are investigating the stability of the asymptotic function (23) that 

corresponds to a homogeneous plasma in the limit of very rare collisions.  

B. Dispersion Relation 

The EVDF given by Eq. (23) after integration over speed 
xu  and returning to the dimensional variables takes the 

form 
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This function depends only on the relative velocity module ʩ̂. The general dispersion relation for Bernstein 

modes propagating perpendicular to the magnetic field in homogeneous and collisionless plasma for the case when 

the distribution function depends only on the velocity modulus is given by35 
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, (41) 

where 
jJ  is the Bessel function of the first kind of order  j.  

We numerically solved the dispersion relation (41) with EVDF given by Eq. (40) for four values of the ratio 

5,4,3,2== TbVWw . The plasma to cyclotron frequency ratio ( )meBmnecp 0

2 eww =  was set to 10 which 

is typical value for the Hall type discharge. Figure 7 shows the dispersion curves obtained. The real frequency 

(black) and growth rate (blue) normalized to cyclotron frequency 
cw  are plotted versus normalized wave number 

ckWw .   
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(a) 0.2=w  

 
 

(b) 0.3=w  

 

(c) 0.4=w  

 
 

(d) 0.5=w  

 

Figure 7. The normalized real frequency (black) and growth rate (blue) for Bernstein waves plotted versus 

normalized wave number keeping ( )10=cp ww  and varying 
TbVWw= : (ʘ) 0.2=w ;  (b) 0.3=w ;  

(c) 0.4=w ;  (d) 0.5=w . 

 

At relatively high thermal spread ( 3,2=w ) the roots of the dispersion relation are real and waves are stable like 

the classic Bernstein modes with Maxwellian transverse velocity distribution. As the thermal spread is reduced 

( 5,4=w ) the imaginary parts of the roots appear and solutions become absolutely unstable. It means that the waves 

will grow in time to amplitudes limited only by the validity of the small-signal theory which has been used in 

obtaining the dispersion relation (41). The imaginary frequency components in the considered cases are very strong. 

Indeed, when the parameter w  is equal to 4, the imaginary component of (
cww ) reaches ~0.3 which corresponds 

to the growth rates of ~16 dB per cyclotron period.  

To study the nonlinear saturation of the wave electric field and the EVDF evolution in time during the 

development of instability we developed a 1D2V (one space and two velocity dimensions) particle-in-cell 

simulation code. 

C. Numerical Model and Simulation Results  

As in the previous considerations we choose an orthogonal coordinate system in which the uniform magnetic 

field B  and the uniform electric field E  are directed along the x-axis and z-axis, respectively. The spatial variation 

of the electron space charge and perturbation of the electric field is in the y direction. The ions are immobile and 

constitute a uniform charge neutralizing background. The electron collisions are neglected because we are interested 
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in the electrostatic high frequency oscillations at short time period which is much less than the mean free time 

between collisions. In absence of the collisions the electron velocity along the magnetic field is constant and 

therefore we excluded the x-component of the velocity from consideration. Acceleration by the Lorentz force was 

integrated using the 4-step Boris method. Particle position was computed using the Leapfrog method. The potential 

variation is obtained by integrating the Poisson equation. On the ends of the space domain with length L  the 

periodical boundary conditions were specified.  

Electrons were loaded in such a way to provide sinusoidal distribution ()( )kynn sin10 g+=  in the space and the 

distribution given by Eq. (23) in velocity space. Here Lk p2=  is a wave number. The undisturbed electron 

number density 
0n  was equal to the ion background number density. The disturbance factor g was adjusted in such 

a way to provide the initial amplitude of the wave electric field component 
Ty EE 210-= , where 

00 eTnET =   

is the characteristic thermal electric field. The number of cells was set to provide the cell size not higher 

than 
Dl5.0 . One period of the electron plasma oscillations was resolved by approximately 50 time steps and the 

total simulation time reaches 6 cyclotron periods. Simulation consisted of  
6105Ö  particles. The simulations were 

performed at a domain length corresponding to the wave number ( )Wk cw5.4= . The plasma to cyclotron 

frequency ratio  ( )cp ww  was set to 10. A series of calculations was performed for the EFDV (23) with 

6,5,4,3,2,1=w .  

Figures 8 and 9 show the results of simulations. On each element of the figures, in the bottom the evolution of 

the normalized wave energy in time is shown. The time in the wave energy diagram is expressed in units of the 

cyclotron rotation period ( )( )pw 2tc
. The normalized wave electric field energy was calculated as the ratio of the 

wave electric field energy 
Ee   to its value at the initial time 

0Ee . In the top of each element of the figures four 

diagrams with the distribution function calculated in the middle of the space domain at the times moments 

corresponding to 0, 2, 4, and 6 of the cyclotron periods are shown. In order not to clutter the drawing, we did not 

show in the EVDF diagrams the axes and the color scales. On the parameters of the electron velocity axes, one can 

get a representation based on Figures 1-6. All distribution functions are normalized on the maximum value and the 

color scale corresponds to the scale shown in Fig. 1.  

As can be seen from Figs. 8-9, the results of numerical simulation are consistent with the conclusions obtained 

from the analysis of the dispersion relation. At 3=w  and less, the wave is stable, and at 4=w  and higher 

instability develops.  

In all the analyzed regimes, the Landau damping occurs in the initial period of time. Then the attenuation ceases 

and the wave passes to the stationary oscillation regime.  

At 3=w  and less the stationary undamped oscillations continue unchanged for many cyclotron periods. The 

form of the EVDF does not change appreciably in this case, retaining the form like a flattened Gaussian distribution 

( 1=w ) or the shape of the crater ( 3,2=w ).  

At 4=w and higher after the initial damping, the wave energy begins to increase and, even during the first 

period of cyclotron rotation, begins to exceed the energy of the initial perturbation. Then the energy of the wave 

increases and within one or two cyclotron periods reaches nonlinear saturation. The initial annular form of the 

distribution function begins to deform and approximately after 4-6 cyclotron periods, the EVDF acquires a complex 

fuzzy shape.  

The calculations show that both the total energy and the total entropy of the system remain constant within the 

limits of the accuracy of the calculations and the error associated with numerical heating. For all the presented 

results, the energy conservation law is performed with relative accuracy up to 
410- . Thus, when an instability 

occurs, the distribution function does not tend to an equilibrium distribution. In this case the EVDF is isentropically 

transformed to some other kind, the properties of which can be the subject of further research. 

Another direction for future research will be analysis of the instability for distribution functions, taking into 

account the electron number density and temperature gradients. The skewing of the walls of the crater for these 

functions can become a factor that significantly influences the development of instability.  
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      (a) 0.1=w  

 
      (b) 0.2=w  

 
      (c)  

 
Figure 8. The evolution of the normalized wave energy in time and the EVDF diagrams at specified time 

moments (more explanation in the text): (ʘ) ;  (b) ; (c) . 


