Spontaneous Raman Scattering Spectroscopy of a Resistojet Plume in a Vacuum Environment

Alfredo D. Tuesta
Postdoctoral Researcher
IEPC-2017-544

Brian T. Fisher
Chemistry Division
US Naval Research Laboratory

Joel A. Silver
Southwest Sciences

Logan T. Williams
and Michael F. Osborn
Spacecraft Engineering Department
US Naval Research Laboratory
About NRL and Our Section

US Naval Research Laboratory

- opened in 1923
- plasma physics
- space physics
- material science

Combustion and Reacting Transport (6185)

- fundamental and applied fire science and suppression
- multiphase transport
- solid fuel combustion
- crude oil remediation

Spontaneous Raman Scattering Spectroscopy of a Resistojet Plume in a Low Vacuum Environment

Alfredo D. Tuesta, et al.
Motivation

• CubeSats
 • Miniaturized satellite for space research
 • Low-cost, light weight

• Micro Resistojet
 • Expansion of gas through a nozzle by electric heating
 • Extend lifespan of CubeSats

• Low Reynolds Regime
 • Viscous and heat transfer losses
 • Modeling: Monte Carlo Method

• Optimize Nozzle Geometry
 • Flow rates
 • Nozzle area ratio
 • Gas compositions
 • Temperature and number density

10 – 100 mTorr
100 – 500 K
0.1 – 10 mN

→ IEPC-2017-306: Holman et al.

→ IEPC-2017-120: Williams et al.
Spontaneous Raman Scattering Spectroscopy

\[N_{i \rightarrow f} = N_L \ln n_0 \left(\frac{n_i}{n_0} \frac{d\sigma}{d\Omega} \right)_{i \rightarrow f} d\Omega \]

- # incident photons
- molecular number density
- differential Raman cross section
- solid angle
- length of beam segment
- population fraction in the initial state
- gas pressure

\[n_0 \propto P \]

Theoretical spectra: CARSFT from Sandia

T = 300 K

N\textsubscript{2} rot. lines

H\textsubscript{2} rot. lines

IEPC-2017-544: Spontaneous Raman Scattering Spectroscopy of a Resistojet Plume in a Low Vacuum Environment

Alfredo D. Tuesta, et al.
Multiple-pass Cell

46 total number of passes, 4 to 6 passes in probe volume
probe volume: 100 µm diameter, 172 µm length
Optical Setup

Laser: Coherent Verdi
Continuous wave, 5-W

Camera: Andor Newton EMCCD

Spectrograph: Kaiser Holographic
SuperNotch Filter
Single-pass vs Multiple-pass: **4.8 gain**
ambient air
4 – 6 passes in probe volume

Lower Pressure Limit in Single-Pass Mode:
26 Torr / 4.8 gain = **5.4 Torr**
Single mode, polarization maintaining fiber from NKT Photonics. FC/UPC connectorized by Coastal Connections.
Future Work

- Multiple-pass Approach
 - Up to 100 total number of passes
- Knobs to turn
 - Increase EMCCD camera gain
 - Reduce EMCCD camera temperature
 - Increase exposure time
- Better fiber alignment -> more laser energy transmission
- H₂ thermometry
- Establish Low Pressure Limit
Thank you for your attention.
Questions?

Presenter: Alfredo D. Tuesta
Postdoctoral Mechanical Engineering Researcher at NRL
IEPC-2017-544
Appendix A: Collecting Optics

optic fiber

100 μm pinhole

50mm doublet

30mm doublet

2-in, 100 mm achromatic doublets

probe volume
Appendix B: Fiber Launch System

The diagram shows a fiber launch system with the following components:

- Mirror
- High power 20x focusing objective
- Optical fiber
- 532 nm laser
- Coherent Verdi CW Laser
- High power beam expander (2x)
Appendix C: Theoretical Spectra

H_2 for temperature and number density measurements
N_2 for number density measurements

Theoretical Profiles from Sandia National Laboratory
CARSFT code.

- $T = 100$ K
- $T = 300$ K
- $T = 500$ K

H_2 rot. lines
N_2 rot. lines

Temperature
Appendix D: Raman vs Rayleigh

Scattering Processing

Rayleigh Scattering: elastic scattering
Raman Scattering: elastic scattering

Image from Tipping et al., Chem. Soc. Rev. 2016, 45, 2075-2089